This study presents an efficient algebraic scheme known as MULES for sharp interface advection, verified against various schemes including first-order upwind, second-order central, van Leer flux limiter, and Geometric Volume-of-Fluid (VOF). Two problems involving a droplet in a two-dimensional (2D) vortex and a stationary droplet were examined. The model assessed the effects of the Interface Compression (IC) coefficient, ranging from 0 to 2, analyzing parameters such as Interface Advection Error (IAE) and Mass Conservation Error (MCE). Results indicated that increasing IC values enhanced interface tracking accuracy but introduced non-physical instabilities at higher values, compromising mass conservation. Specifically, the IAE decreased from 4.8% to 3.95% as IC increased from 0 to 2, showing a favorable effect until IC surpassed 1.4, where IAE fluctuated around 4%. Conversely, the MCE rose steeply from 0% to 23.19%, driven by parasitic currents and numerical instabilities. Additionally, MULES and van Leer flux limiter schemes evaluated volume fraction smoothing effects. Initial filtering reduced Dimensionless Pressure Difference (DPD) and Capillary Number (Ca), stabilizing the solution, but excessive filtering reintroduced numerical errors and instabilities. With one filtering step, DPD reduced by 0.23 and Ca dropped significantly by 73.31%, improving solution stability. However, further filtering increased DPD and Ca, reflecting the reintroduction of numerical errors. The maximum velocity of parasitic flow around the droplet initially decreased by almost 75% but increased by 30.92% with excessive filtering. IAE increased from 0.7 to 0.9 with initial filtering, then decreased to 0.63 with additional steps, indicating improved solver performance on smoother interfaces.


翻译:暂无翻译

0
下载
关闭预览

相关内容

分布式并行数据库(DPD)在所有传统的以及新兴的数据库研究领域中发表论文,包括:数据集成、数据共享、安全和隐私、事务管理、流程和工作流管理、信息提取、查询处理和优化、分析大型数据集的挖掘和可视化、存储、数据碎片,放置和分配复制协议、可靠性、容错、持久性、保留、性能和可伸缩性以及各种通信和传播平台及中间件的使用。 官网地址:http://dblp.uni-trier.de/db/journals/dpd/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员