This paper introduces a data-dependent approximation of the forward kinematics map for certain types of animal motion models. It is assumed that motions are supported on a low-dimensional, unknown configuration manifold $Q$ that is regularly embedded in high dimensional Euclidean space $X:=\mathbb{R}^d$. This paper introduces a method to estimate forward kinematics from the unknown configuration submanifold $Q$ to an $n$-dimensional Euclidean space $Y:=\mathbb{R}^n$ of observations. A known reproducing kernel Hilbert space (RKHS) is defined over the ambient space $X$ in terms of a known kernel function, and computations are performed using the known kernel defined on the ambient space $X$. Estimates are constructed using a certain data-dependent approximation of the Koopman operator defined in terms of the known kernel on $X$. However, the rate of convergence of approximations is studied in the space of restrictions to the unknown manifold $Q$. Strong rates of convergence are derived in terms of the fill distance of samples in the unknown configuration manifold, provided that a novel regularity result holds for the Koopman operator. Additionally, we show that the derived rates of convergence can be applied in some cases to estimates generated by the extended dynamic mode decomposition (EDMD) method. We illustrate characteristics of the estimates for simulated data as well as samples collected during motion capture experiments.
翻译:本文为某些类型的动物运动模型引入了远方运动图的数据依赖近似值。 假设在低维、 未知的配置方元美元上支持运动, 并且经常嵌入高维Euclidean 空间 $X: ⁇ mathbb{R ⁇ d$美元。 本文介绍了一种方法, 用来从未知的配置子配置子折叠 $Q美元到 美元 美元 的 Euclidean 空间的远方运动学估算 $Y: ⁇ mathbb{R ⁇ n$ 观察值。 已知的再生产内核希尔伯特空间(RKHS) 是在环境空间上以已知的内核功能定义的低维度、 未知的配置方元元元元 。 计算方法采用已知内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内化学内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 。 然而 。 然而 。 然而 。 然而 。 然而之内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内 研究,,, 。 。 。 。 校内核内核内核内核内核内核内核内核内核内核内核内