The original problem of group testing consists in the identification of defective items in a collection, by applying tests on groups of items that detect the presence of at least one defective item in the group. The aim is then to identify all defective items of the collection with as few tests as possible. This problem is relevant in several fields, among which biology and computer sciences. In the present article we consider that the tests applied to groups of items returns a \emph{load}, measuring how defective the most defective item of the group is. In this setting, we propose a simple non-adaptative algorithm allowing the detection of all defective items of the collection. This method improves on classical group testing algorithms using only the binary response of the test. Group testing recently gained attraction as a potential tool to solve a shortage of COVID-19 test kits, in particular for RT-qPCR. These tests return the viral load of the sample and the viral load varies greatly among individuals. Therefore our model presents some of the key features of this problem. We aim at using the extra piece of information that represents the viral load to construct a one-stage pool testing algorithm on this idealized version. We show that under the right conditions, the total number of tests needed to detect contaminated samples can be drastically diminished.
翻译:集团测试的最初问题在于通过对组群中发现至少一个有缺陷的物品的组群进行测试,从而发现组群中存在至少一个有缺陷的物品,从而查明组群中的缺陷物品。然后,目的是用尽可能少的测试来查明组群中所有有缺陷的物品。这个问题在几个领域都存在,其中包括生物学和计算机科学。在本篇文章中,我们认为,对组群项目进行的测试返回到一个\emph{{load},衡量组群体中最有缺陷的物品是如何有缺陷的。在这个设置中,我们提出一个简单的非适应性算法,以便能够探测到该组群中所有有缺陷的物品。这个方法只用试验的二进制反应来改进古典组的测试算法。最近,组群测试作为解决COVID-19测试包短缺,特别是RT-qPCR的短缺的一个潜在工具,具有吸引力。这些测试将样品的病毒负荷和个人的病毒负荷差别很大。因此,我们的模型展示了这一问题的一些关键特征。我们的目标是使用额外的资料,用来在这种理想的版本中制造一个阶段的污染状态中测测算。我们所需要的测算。