Constrained submodular set function maximization problems often appear in multi-agent decision-making problems with a discrete feasible set. A prominent example is the problem of multi-agent mobile sensor placement over a discrete domain. Submodular set function optimization problems, however, are known to be NP-hard. This paper considers a class of submodular optimization problems that consist of maximization of a monotone and submodular set function subject to a uniform matroid constraint over a group of networked agents that communicate over a connected undirected graph. We work in the value oracle model where the only access of the agents to the utility function is through a black box that returns the utility function value. We propose a distributed suboptimal polynomial-time algorithm that enables each agent to obtain its respective strategy via local interactions with its neighboring agents. Our solution is a fully distributed gradient-based algorithm using the submodular set functions' multilinear extension followed by a distributed stochastic Pipage rounding procedure. This algorithm results in a strategy set that when the team utility function is evaluated at worst case, the utility function value is in 1/c(1-e^(-c)-O(1/T)) of the optimal solution with c to be the curvature of the submodular function. An example demonstrates our results.


翻译:受限制的子调制元件函数最大化问题往往出现在多试剂决策问题中,有一套离散可行的套件。一个突出的例子就是多试剂移动感应器在离散域域的定位问题。但已知的子调制函数优化问题是硬的。本文考虑的是一组子调制优化问题,其中包括将单调和子调制元件的功能最大化,但需服从一个统一的单调制件和子调制件功能的制约,以一组通过连接的未定向图解介的网络化代理器进行通信的多线性扩展。我们的工作是在一个价值或奇格模型中进行工作,在这个模型中,代理器只能通过一个黑盒子进入该工具函数,返回该功能的价值。我们提议一种分布的亚优美度多元度多米时间算法,使每个代理器能够通过与其邻近代理器的当地互动获得各自的战略。我们的解决办法是完全分布的梯度算法,使用子集函数的多线性扩展,随后是分布式的分流式回路图圆程序。这种算法的结果在一种战略设置中,在最坏的情形下评价团队效用功能时,将工具功能值值值值值值值值值值值值值在1/C1-C1/ 示范结果。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月29日
VIP会员
相关VIP内容
专知会员服务
41+阅读 · 2021年4月2日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
39+阅读 · 2020年3月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
MIT新书《强化学习与最优控制》
专知会员服务
276+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员