Unravelling the block structure of a network is critical for studying macroscopic features and community-level dynamics. The weighted stochastic block model (WSBM), a variation of the traditional stochastic block model, is designed for weighted networks, but it is not always optimal. We introduce a novel topological method to study the block structure of weighted networks by comparing their persistence diagrams. We found persistence diagrams of networks with different block structures show distinct features, sufficient to distinguish. Moreover, the overall characteristics are preserved even with more stochastic examples or modified hyperparameters. Finally, when random graphs whose latent block structure is unknown are tested, results from persistence diagram analysis are consistent with their weighted stochastic block model. Although this topological method cannot completely replace the original WSBM method for some reasons, it is worth to be investigated further.


翻译:清除网络的区块结构对于研究宏观特征和社区一级动态至关重要。 加权随机区块模型(WSBM)是传统随机区块模型的变异,是为加权网络设计的,但并非始终是最佳的。 我们引入了一种新的地形学方法,通过比较其持久性图表来研究加权网络的区块结构。 我们发现,不同区块结构的网络的持久性图显示了不同的特征,足以加以区分。 此外,总体特征即使用更多的随机示例或经过修改的超参数来保存。 最后,当对潜在区块结构未知的随机图表进行测试时,持久性图分析的结果与其加权随机区块模型一致。 尽管这种地形学方法由于某些原因无法完全取代原始的WSBM方法,但值得进一步研究。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月2日
Arxiv
0+阅读 · 2021年10月1日
Arxiv
13+阅读 · 2021年5月25日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员