Session-based recommender systems capture the short-term interest of a user within a session. Session contexts (i.e., a user's high-level interests or intents within a session) are not explicitly given in most datasets, and implicitly inferring session context as an aggregation of item-level attributes is crude. In this paper, we propose ISCON, which implicitly contextualizes sessions. ISCON first generates implicit contexts for sessions by creating a session-item graph, learning graph embeddings, and clustering to assign sessions to contexts. ISCON then trains a session context predictor and uses the predicted contexts' embeddings to enhance the next-item prediction accuracy. Experiments on four datasets show that ISCON has superior next-item prediction accuracy than state-of-the-art models. A case study of ISCON on the Reddit dataset confirms that assigned session contexts are unique and meaningful.
翻译:届会背景(即用户在届会中的高水平利益或意图)没有在大多数数据集中明确给出,并隐含地推断会议背景,因为项目级属性的汇总是粗糙的。在本文件中,我们建议ISCON将会议隐含背景。ISCON首先通过创建届会项目图、学习图形嵌入和分组将届会分配给背景,为届会产生隐含背景。然后,ISCON培训会议背景预测,并利用预测环境嵌入来提高下一个项目预测的准确性。对四个数据集的实验显示,ISCON的下一个项目的预测准确性优于最新模型。ISCON关于重新编辑数据集的案例研究证实,指定的会议背景是独特和有意义的。