We consider the differential entropy of probability measures absolutely continuous with respect to a given $\sigma$-finite reference measure on an arbitrary measurable space. We state the asymptotic equipartition property in this general case; the result is part of the folklore but our presentation is to some extent novel. Then we study a general framework under which such entropies satisfy a chain rule: disintegrations of measures. We give an asymptotic interpretation for conditional entropies in this case. Finally, we apply our result to Haar measures in canonical relation.
翻译:我们认为,在任意可测量的空间上,一个特定美元-绝对参照措施的概率计量值的微小差别是绝对连续的。我们在此一般情况下说明无药可救的装备属性;结果属于民间传说的一部分,但我们的表述在某种程度上是新颖的。然后我们研究一个总的框架,根据这个框架,这种异种满足链条规则:措施的解体。我们在此情况下对有条件的异种给予无药可治的解释。最后,我们在卡通关系上应用我们的结果。