We share a small connection between information theory, algebra, and topology - namely, a correspondence between Shannon entropy and derivations of the operad of topological simplices. We begin with a brief review of operads and their representations with topological simplices and the real line as the main example. We then give a general definition for a derivation of an operad in any category with values in an abelian bimodule over the operad. The main result is that Shannon entropy defines a derivation of the operad of topological simplices, and that for every derivation of this operad there exists a point at which it is given by a constant multiple of Shannon entropy. We show this is compatible with, and relies heavily on, a well-known characterization of entropy given by Faddeev in 1956 and a recent variation given by Leinster.


翻译:我们分享了信息理论、代数和地形学之间的一个小联系,即香农昆虫之间的对应关系,以及所演的表象。我们首先简要地回顾歌剧及其与表象性不一和真实线的表述,作为主要例子。然后我们给出了在任何类别中产生一个剧象的总定义,该剧团的数值在歌剧的双模体上都有。主要结果是香农昆虫定义了所演的表象性不一的衍生,对于这场歌剧的每一个衍生物,都存在一个由香农复方常数给出的点。我们展示了这一点与Faddeev在1956年给出的众所周知的昆虫特征以及Leinster最近给出的变异。

0
下载
关闭预览

相关内容

专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
激活函数初学者指南
论智
6+阅读 · 2018年5月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
How can classical multidimensional scaling go wrong?
Arxiv
0+阅读 · 2021年10月28日
Arxiv
7+阅读 · 2021年10月19日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【普林斯顿大学-微软】加权元学习,Weighted Meta-Learning
专知会员服务
40+阅读 · 2020年3月25日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
激活函数初学者指南
论智
6+阅读 · 2018年5月15日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年11月2日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
How can classical multidimensional scaling go wrong?
Arxiv
0+阅读 · 2021年10月28日
Arxiv
7+阅读 · 2021年10月19日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
Top
微信扫码咨询专知VIP会员