In this paper, we study the problem of estimating smooth Generalized Linear Models (GLMs) in the Non-interactive Local Differential Privacy (NLDP) model. Different from its classical setting, our model allows the server to access some additional public but unlabeled data. In the first part of the paper we focus on GLMs. Specifically, we first consider the case where each data record is i.i.d. sampled from a zero-mean multivariate Gaussian distribution. Motivated by the Stein's lemma, we present an $(\epsilon, \delta)$-NLDP algorithm for GLMs. Moreover, the sample complexity of public and private data for the algorithm to achieve an $\ell_2$-norm estimation error of $\alpha$ (with high probability) is ${O}(p \alpha^{-2})$ and $\tilde{O}(p^3\alpha^{-2}\epsilon^{-2})$ respectively, where $p$ is the dimension of the feature vector. This is a significant improvement over the previously known exponential or quasi-polynomial in $\alpha^{-1}$, or exponential in $p$ sample complexities of GLMs with no public data. Then we consider a more general setting where each data record is i.i.d. sampled from some sub-Gaussian distribution with bounded $\ell_1$-norm. Based on a variant of Stein's lemma, we propose an $(\epsilon, \delta)$-NLDP algorithm for GLMs whose sample complexity of public and private data to achieve an $\ell_\infty$-norm estimation error of $\alpha$ is ${O}(p^2\alpha^{-2})$ and $\tilde{O}(p^2\alpha^{-2}\epsilon^{-2})$ respectively, under some mild assumptions and if $\alpha$ is not too small ({\em i.e.,} $\alpha\geq \Omega(\frac{1}{\sqrt{p}})$). In the second part of the paper, we extend our idea to the problem of estimating non-linear regressions and show similar results as in GLMs for both multivariate Gaussian and sub-Gaussian cases. Finally, we demonstrate the effectiveness of our algorithms through experiments on both synthetic and real-world datasets.


翻译:在本文的第一部分, 我们研究如何估算平滑通用线性模型( GLM) 在非互动的本地差异隐私( NLDP) 模式中 。 不同于其古典设置, 我们的模型允许服务器访问一些额外的公共数据, 但是没有标签。 在本文的第一部分, 我们关注 GLM 。 具体地说, 我们首先考虑每个数据记录为 i. i. d. 从零度的多变量 Gaussia 分布的样本 。 在 Stein's Lemmma 的样本中, 我们提出了$( epl,\ delta) $- NLDP 算法。 此外, 用于算法的公共和私人数据的样本复杂性, $_ 2美元( 高概率) 是 $( p\ pha) 和 $tildea. (pl) 问题( lif3\ lip) 的样本 。 如果 = $( listal_ d) i) 和 AL_ dromoal 数据 的模型中, i- droupal 。 这是以前一个显著的数据( lax) 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
11+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员