The Geometric Bin Packing (GBP) problem is a generalization of Bin Packing where the input is a set of $d$-dimensional rectangles, and the goal is to pack them into unit $d$-dimensional cubes efficiently. It is NP-Hard to obtain a PTAS for the problem, even when $d=2$. For general $d$, the best-known approximation algorithm has an approximation guarantee exponential in $d$, while the best hardness of approximation is still a small constant inapproximability from the case when $d=2$. In this paper, we show that the problem cannot be approximated within $d^{1-\epsilon}$ factor unless NP=ZPP. Recently, $d$-dimensional Vector Bin Packing, a closely related problem to the GBP, was shown to be hard to approximate within $\Omega(\log d)$ when $d$ is a fixed constant, using a notion of Packing Dimension of set families. In this paper, we introduce a geometric analog of it, the Geometric Packing Dimension of set families. While we fall short of obtaining similar inapproximability results for the Geometric Bin Packing problem when $d$ is fixed, we prove a couple of key properties of the Geometric Packing Dimension which highlight fundamental differences between Geometric Bin Packing and Vector Bin Packing.
翻译:暂无翻译