Given a graph $G=(V,E)$ with arboricity $\alpha$, we study the problem of decomposing the edges of $G$ into $(1+\epsilon)\alpha$ disjoint forests in the distributed LOCAL model. Barenboim and Elkin [PODC `08] gave a LOCAL algorithm that computes a $(2+\epsilon)\alpha$-forest decomposition using $O(\frac{\log n}{\epsilon})$ rounds. Ghaffari and Su [SODA `17] made further progress by computing a $(1+\epsilon) \alpha$-forest decomposition in $O(\frac{\log^3 n}{\epsilon^4})$ rounds when $\epsilon \alpha = \Omega(\sqrt{\alpha \log n})$, i.e. the limit of their algorithm is an $(\alpha+ \Omega(\sqrt{\alpha \log n}))$-forest decomposition. This algorithm, based on a combinatorial construction of Alon, McDiarmid \& Reed [Combinatorica `92], in fact provides a decomposition of the graph into \emph{star-forests}, i.e. each forest is a collection of stars. Our main result in this paper is to reduce the threshold of $\epsilon \alpha$ in $(1+\epsilon)\alpha$-forest decomposition and star-forest decomposition. This further answers the $10^{\text{th}}$ open question from Barenboim and Elkin's "Distributed Graph Algorithms" book. Moreover, it gives the first $(1+\epsilon)\alpha$-orientation algorithms with {\it linear dependencies} on $\epsilon^{-1}$. At a high level, our results for forest-decomposition are based on a combination of network decomposition, load balancing, and a new structural result on local augmenting sequences. Our result for star-forest decomposition uses a more careful probabilistic analysis for the construction of Alon, McDiarmid, \& Reed; the bounds on star-arboricity here were not previously known, even non-constructively.
翻译:以平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方正平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方正平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方平方