Learning to generate 3D point clouds without 3D supervision is an important but challenging problem. Current solutions leverage various differentiable renderers to project the generated 3D point clouds onto a 2D image plane, and train deep neural networks using the per-pixel difference with 2D ground truth images. However, these solutions are still struggling to fully recover fine structures of 3D shapes, such as thin tubes or planes. To resolve this issue, we propose an unsupervised approach for 3D point cloud generation with fine structures. Specifically, we cast 3D point cloud learning as a 2D projection matching problem. Rather than using entire 2D silhouette images as a regular pixel supervision, we introduce structure adaptive sampling to randomly sample 2D points within the silhouettes as an irregular point supervision, which alleviates the consistency issue of sampling from different view angles. Our method pushes the neural network to generate a 3D point cloud whose 2D projections match the irregular point supervision from different view angles. Our 2D projection matching approach enables the neural network to learn more accurate structure information than using the per-pixel difference, especially for fine and thin 3D structures. Our method can recover fine 3D structures from 2D silhouette images at different resolutions, and is robust to different sampling methods and point number in irregular point supervision. Our method outperforms others under widely used benchmarks. Our code, data and models are available at https://github.com/chenchao15/2D\_projection\_matching.


翻译:学习如何在没有 3D 监管下生成 3D 点云是一个重要但具有挑战性的问题。 当前解决方案将各种不同的解介器用于将生成的 3D 点云投射到 2D 图像平面上, 并用 2D 地面真实图像来培训深神经网络。 然而, 这些解决方案仍然在努力要完全恢复 3D 形状的精细结构, 如薄管或平面。 为了解决这个问题, 我们建议对 3D 点云生成采用不受监督的方法, 且有精细结构 。 具体地说, 我们将 3D 点云作为 2D 投影匹配问题。 而不是将整个 2D 点的图像投射成一个常规的像素平平面监督器, 而是将 2D 点的随机采样器作为不规则性检测器。 我们的方法推向神经网络生成一个 3D 点, 2D 代码与不同角度的不规则的监控器 。 我们的2D 匹配方法使得神经网络能够学习比使用 3D 的精确的结构信息,,, 以不同的采集方法, 和 不同的取样方法 。

0
下载
关闭预览

相关内容

根据激光测量原理得到的点云,包括三维坐标(XYZ)和激光反射强度(Intensity)。 根据摄影测量原理得到的点云,包括三维坐标(XYZ)和颜色信息(RGB)。 结合激光测量和摄影测量原理得到点云,包括三维坐标(XYZ)、激光反射强度(Intensity)和颜色信息(RGB)。 在获取物体表面每个采样点的空间坐标后,得到的是一个点的集合,称之为“点云”(Point Cloud)
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】点云到网格的回归算法实现
泡泡机器人SLAM
8+阅读 · 2018年11月23日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Deep Learning for 3D Point Clouds: A Survey
Arxiv
3+阅读 · 2019年12月27日
Arxiv
4+阅读 · 2017年1月2日
VIP会员
相关VIP内容
机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】点云到网格的回归算法实现
泡泡机器人SLAM
8+阅读 · 2018年11月23日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
ICCV17 :12为顶级大牛教你学生成对抗网络(GAN)!
全球人工智能
8+阅读 · 2017年11月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员