We give an algorithm that generates a uniformly random contingency table with specified marginals, i.e. a matrix with non-negative integer values and specified row and column sums. Such algorithms are useful in statistics and combinatorics. When $\Delta^4< M/5$, where $\Delta$ is the maximum of the row and column sums and $M$ is the sum of all entries of the matrix, our algorithm runs in time linear in $M$ in expectation. Most previously published algorithms for this problem are approximate samplers based on Markov chain Monte Carlo, whose provable bounds on the mixing time are typically polynomials with rather large degrees.


翻译:我们给出一种算法, 生成一个单一随机的应急表, 包含指定的边际, 即一个带有非负整数的矩阵, 以及指定的行和列总和。 这种算法在统计和组合分析中有用。 当$\ Delta4 < M/5$, 其中$\ Delta$是行和列总和, 和$M$是矩阵所有条目的总和时线, 我们的算法在预期中以美元为线性运行。 这个问题的多数先前公布的算法都是基于Markov 链 Monte Carlo 的大致样本, 其混合时间的可辨别界限一般是相当大的多数值 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年8月16日
Arxiv
0+阅读 · 2021年8月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员