Hotelling's T-squared test is a classical tool to test if the normal mean of a multivariate normal distribution is a specified one or the means of two multivariate normal means are equal. When the population dimension is higher than the sample size, the test is no longer applicable. Under this situation, in this paper we revisit the tests proposed by Srivastava and Du (2008), who revise the Hotelling's statistics by replacing Wishart matrices with their diagonal matrices. They show the revised statistics are asymptotically normal. We use the random matrix theory to examine their statistics again and find that their discovery is just part of the big picture. In fact, we prove that their statistics, decided by the Euclidean norm of the population correlation matrix, can go to normal, mixing chi-squared distributions and a convolution of both. Examples are provided to show the phase transition phenomenon between the normal and mixing chi-squared distributions. The second contribution of ours is a rigorous derivation of an asymptotic ratio-unbiased-estimator of the squared Euclidean norm of the correlation matrix.
翻译:Holsiling的 T 夸度测试是一个古典工具, 用于测试多变正常分布的正常平均值是否为特定的一种或两种多变正常方式的手段是否相等。 当人口量比样本大小高时, 测试不再适用。 在此情况下, 我们重新审视Srivastava和 Du (2008) 提出的测试, 由Srivastava和 Du (2008) 以对等矩阵取代Wishart 矩阵来修改酒店的统计数据。 它们显示, 修订后的统计数据是微不足道的正常的。 我们使用随机矩阵理论再次检查其统计数据, 发现其发现只是大图中的一部分。 事实上, 我们证明由人口相关矩阵的 Eucloidean 规范决定的这些统计数据可以进入正常状态, 混合相近的分布和两者的演进。 我们提供的示例是显示正常分布和相近分布之间的阶段过渡现象。 我们的第二个贡献是精确的推算出一个对等比偏偏偏偏偏的模型。