The Chebyshev or $\ell_{\infty}$ estimator is an unconventional alternative to the ordinary least squares in solving linear regressions. It is defined as the minimizer of the $\ell_{\infty}$ objective function \begin{align*} \hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \|\boldsymbol{Y} - \mathbf{X}\boldsymbol{\beta}\|_{\infty}. \end{align*} The asymptotic distribution of the Chebyshev estimator under fixed number of covariates were recently studied (Knight, 2020), yet finite sample guarantees and generalizations to high-dimensional settings remain open. In this paper, we develop non-asymptotic upper bounds on the estimation error $\|\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}^*\|_2$ for a Chebyshev estimator $\hat{\boldsymbol{\beta}}$, in a regression setting with uniformly distributed noise $\varepsilon_i\sim U([-a,a])$ where $a$ is either known or unknown. With relatively mild assumptions on the (random) design matrix $\mathbf{X}$, we can bound the error rate by $\frac{C_p}{n}$ with high probability, for some constant $C_p$ depending on the dimension $p$ and the law of the design. Furthermore, we illustrate that there exist designs for which the Chebyshev estimator is (nearly) minimax optimal. In addition we show that "Chebyshev's LASSO" has advantages over the regular LASSO in high dimensional situations, provided that the noise is uniform. Specifically, we argue that it achieves a much faster rate of estimation under certain assumptions on the growth rate of the sparsity level and the ambient dimension with respect to the sample size.


翻译:Chebyshev 或 $\ ell\ incinfty} 估量器是普通最小平方大小的非传统替代方 解决线性回归。 它定义为 $\ ell\ incinfty} 目标函数的最小值 \ begin{ ALign}\ hat\ boldsymbol\ beta} = =\ arg\ min\ boldsymbol\ {Y} -\ mathyblysyf{X} - mathybsylmbol_ betemymbol_ in fty} 。 sendalignation {alignation_ listalformations relations a $_ dirstal dislation_ dislight_ ladgreaddal_ ladal_ lax

0
下载
关闭预览

相关内容

【UAI2021教程】贝叶斯最优学习,65页ppt
专知会员服务
64+阅读 · 2021年8月7日
专知会员服务
50+阅读 · 2020年12月14日
【最受欢迎的概率书】《概率论:理论与实例》,490页pdf
专知会员服务
163+阅读 · 2020年11月13日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
161+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员