We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a $d$-dimensional square matrix $M$ whose entries are algebraic functions in one or more real variables. Given initial and target vectors $u,v\in \mathbb{Q}^d$, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix $N \in \mathbb{R}^{d\times d}$, and a positive integer $n\in \mathbb{N}$, such that $N^nu = v$. We show decidability for the case in which $M$ depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.
翻译:我们对线性动态系统研究Kannan-Lipton轨道问题的参数版本。 我们用两个或两个以上参数来显示一个参数和Skolem-hardity的变异性。 更准确地说, 考虑一个在一个或多个真实变量中具有代数函数的 $M$ 的方位矩阵 。 鉴于初始矢量和目标矢量 $u, v\ in\ mathbb ⁇ d$, 参数点对点轨道问题询问是否存在产生一个具体矩阵的参数值 $N\ in\mathbb{R ⁇ d\timeds d}$, 和正整数 $n\ in\ mathb{N}$, 因此, $nnu= v$。 我们显示, $仅依赖于一个单一参数的情况的变异性, 我们展示了在线性重序列中与众所周知的Skolem问题相比的减值, 表示两个或更多参数的吸引力。