In this paper, we analyse singular values of a large $p\times n$ data matrix $\mathbf{X}_n= (\mathbf{x}_{n1},\ldots,\mathbf{x}_{nn})$ where the column $\mathbf{x}_{nj}$'s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $\mathbf{\Sigma}_{nj}=\text{Cov}(\mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $\mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.
翻译:在本文中, 我们分析一个大的 $p\ times n$ 数据基的奇值 $mathbbf{x}X ⁇ n= (\ mathbf{x}n1},\ ldots,\ mathbf{x ⁇ nn}}) $ 列是独立的 $pf{x{x{{nj} 维向量, 可能分布不同。 这些数据基质在高维统计中很常见。 一个关键假设是, 基质基质基质基质基质 $\mathbff=Sigmab ⁇ n{tle{Cov} (\\\mathbf{x}ral_nj}}) 基质基质基质基值可以以静态方式同时进行分解, 且其光质值适当趋近, 我们的基质基质基质基质的基质分配过程 。 我们的基质基质基质 基质 基质的基质模型 和我们基质的基质的基质的基质的基质数据 。 我们基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基质的基体, 。