We introduce the multivariate decomposition finite element method (MDFEM) for solving elliptic PDEs with uniform random diffusion coefficients. We show that the MDFEM can be used to reduce the computational complexity of estimating the expected value of a linear functional of the solution of the PDE. The proposed algorithm combines the multivariate decomposition method (MDM), to compute infinite dimensional integrals, with the finite element method (FEM), to solve different instances of the PDE. The strategy of the MDFEM is to decompose the infinite-dimensional problem into multiple finite-dimensional ones which lends itself to easier parallelization than to solve a single large dimensional problem. Our first result adjusts the analysis of the multivariate decomposition method to incorporate the log-factor which typically appears in error bounds for multivariate quadrature, i.e., cubature, methods; and we take care of the fact that the number of points $n$ needs to come, e.g., in powers of 2 for higher order approximations. For the further analysis we specialize the cubature methods to be two types of quasi-Monte Carlo (QMC) rules, being digitally shifted polynomial lattice rules and interlaced polynomial lattice rules. The second and main contribution then presents a bound on the error of the MDFEM and shows higher-order convergence w.r.t. the total computational cost in case of the interlaced polynomial lattice rules in combination with a higher-order finite element method.
翻译:我们引入了以统一的随机扩散系数解决椭圆式 PDE 的多变量分解定数法( MDFEM ) 。 我们显示, MDFEM 可用于降低估算 PDE 解决方案的线性功能的预期值的计算复杂性。 提议的算法结合了多变量分解法( MDM ), 以计算无限的维分解元件( FEM ) 来解决 PDE 的不同实例。 MDFEM 的策略是将无限的维问题分解成多维维化问题,这比解决一个单一大的维度问题更容易平行。 我们的第一个结果调整了多变量分解法的分析, 以纳入对多变量二次变异性方形的计算法( MMMMM ), 以计算无限的元分解分解法( F), 以计算出 $nnd 的数值, 例如, 以 2 更高排序的 。 对于进一步的分析, 我们专门用主数级规则的缩式规则 和 中间规则的两种类型, 以 数字式 的递缩规则 。