We establish an equivalence between the $\ell_2$-regularized solution path for a convex loss function, and the solution of an ordinary differentiable equation (ODE). Importantly, this equivalence reveals that the solution path can be viewed as the flow of a hybrid of gradient descent and Newton method applying to the empirical loss, which is similar to a widely used optimization technique called trust region method. This provides an interesting algorithmic view of $\ell_2$ regularization, and is in contrast to the conventional view that the $\ell_2$ regularization solution path is similar to the gradient flow of the empirical loss.New path-following algorithms based on homotopy methods and numerical ODE solvers are proposed to numerically approximate the solution path. In particular, we consider respectively Newton method and gradient descent method as the basis algorithm for the homotopy method, and establish their approximation error rates over the solution path. Importantly, our theory suggests novel schemes to choose grid points that guarantee an arbitrarily small suboptimality for the solution path. In terms of computational cost, we prove that in order to achieve an $\epsilon$-suboptimality for the entire solution path, the number of Newton steps required for the Newton method is $\mathcal O(\epsilon^{-1/2})$, while the number of gradient steps required for the gradient descent method is $\mathcal O\left(\epsilon^{-1} \ln(\epsilon^{-1})\right)$. Finally, we use $\ell_2$-regularized logistic regression as an illustrating example to demonstrate the effectiveness of the proposed path-following algorithms.


翻译:我们在 $ ell_ 2$ 常规化的解决方案路径和普通不同的公式( ODE) 的解决方案之间建立等值。 重要的是, 这个等值显示, 解决方案路径可以被视为适用于经验性损失的梯度下降和牛顿方法的混合流。 这类似于一种广泛使用的优化技术, 称为信任区域方法。 这为 $\ ell_ 2$ 正规化提供了有趣的算法观点, 与常规观点相反, 美元( ell_ 2$) 正规化解决方案路径与经验性损失的梯度流相似。 以同质结构方法为基础的新的路径跟踪算法和数字式 ODE 解决方案解算法建议从数字上接近解决方案路径路径。 特别是, 我们分别将 牛顿方法和梯度下降法视为同质方法的基础算法, 并在解决方案路径路径上选择一种任意的低至亚值的亚值次数。 在计算成本方面, 我们证明为了达到 $\\\ 美元递升 递升 递增 递升 轨道 的方法是 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Coordinate Descent Methods for DC Minimization
Arxiv
0+阅读 · 2021年9月9日
Arxiv
6+阅读 · 2021年6月24日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员