In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability for a set of clauses. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a prototype solver to several problems that are very challenging for search-based SAT solvers, obtaining polynomially sized proofs on benchmarks for parity formulas, as well as the Urquhart, mutilated chessboard, and pigeonhole problems.


翻译:2006年,Biere、Jussila和Sinz提出关键意见,认为构建减压二进制决定图(BDDs)的算法背后的逻辑可以作为延伸分辨率逻辑框架中的证明步骤进行编码。 通过这个方法,基于BDD的Boolean可参数解答器可以产生一套条款不满意的可核实证据。这种证据表明,该公式确实无法满足,而不需要用户信任BDDS软件包或在上面建立的SAT软件求解器。我们扩大了它们的工作,以便能够对公式变量进行任意的存在量化,这是基于BDDS的SAT解答器的关键能力。我们通过对基于搜索的SAT解答器极具挑战的一些问题应用原型解答器,在对等式公式的基准以及Urquhart、肢解肢化的棋盘和鸽子洞问题获得多缩缩缩缩的证明,来证明这一方法的效用。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
7+阅读 · 2020年3月1日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关资讯
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员