Showing relevant search results to the user is the primary challenge for any search system. Walmart e-commerce provides an omnichannel search platform to its customers to search from millions of products. This search platform takes a textual query as input and shows relevant items from the catalog. One of the primary challenges is that this queries are complex to understand as it contains multiple intent in many cases. This paper proposes a framework to group search results into multiple ranked lists intending to provide better user intent. The framework is to create a product graph having relations between product entities and utilize it to group search results into a series of stacks where each stack provides a group of items based on a precise intent. As an example, for a query "milk," the results can be grouped into multiple stacks of "white milk", "low-fat milk", "almond milk", "flavored milk". We measure the impact of our algorithm by evaluating how it improves the user experience both in terms of search quality relevance and user behavioral signals like Add-To-Cart.
翻译:向用户显示相关搜索结果是任何搜索系统的主要挑战。 沃尔玛电子商业为客户提供了一个从数百万个产品中搜索的全网搜索平台。 这个搜索平台将文字查询作为输入, 并显示目录中的相关项目。 其中一项主要挑战在于, 这样的查询非常复杂, 要理解它包含多种意图。 本文提出了一个框架, 将搜索结果分组到多个排名列表中, 目的是提供更好的用户意图。 这个框架旨在创建产品图表, 显示产品实体之间的关系, 并利用它将搜索结果分组到一系列堆叠中, 每个堆叠都提供一组基于精确意图的物品。 例如, 查询“ 牛奶 ”, 其结果可以分组到多个“ 白牛奶 ”、“ 低脂牛奶 ” 、 “ 乳脂 ” 、 “ 蔬菜牛奶 ” 。 我们通过评估算法如何改善用户在搜索质量相关性和用户行为信号( 如“ 添加到卡特 ” ) 方面的经验, 来衡量我们算法的影响。