Showing relevant search results to the user is the primary challenge for any search system. Walmart e-commerce provides an omnichannel search platform to its customers to search from millions of products. This search platform takes a textual query as input and shows relevant items from the catalog. One of the primary challenges is that this queries are complex to understand as it contains multiple intent in many cases. This paper proposes a framework to group search results into multiple ranked lists intending to provide better user intent. The framework is to create a product graph having relations between product entities and utilize it to group search results into a series of stacks where each stack provides a group of items based on a precise intent. As an example, for a query "milk," the results can be grouped into multiple stacks of "white milk", "low-fat milk", "almond milk", "flavored milk". We measure the impact of our algorithm by evaluating how it improves the user experience both in terms of search quality relevance and user behavioral signals like Add-To-Cart.


翻译:向用户显示相关搜索结果是任何搜索系统的主要挑战。 沃尔玛电子商业为客户提供了一个从数百万个产品中搜索的全网搜索平台。 这个搜索平台将文字查询作为输入, 并显示目录中的相关项目。 其中一项主要挑战在于, 这样的查询非常复杂, 要理解它包含多种意图。 本文提出了一个框架, 将搜索结果分组到多个排名列表中, 目的是提供更好的用户意图。 这个框架旨在创建产品图表, 显示产品实体之间的关系, 并利用它将搜索结果分组到一系列堆叠中, 每个堆叠都提供一组基于精确意图的物品。 例如, 查询“ 牛奶 ”, 其结果可以分组到多个“ 白牛奶 ”、“ 低脂牛奶 ” 、 “ 乳脂 ” 、 “ 蔬菜牛奶 ” 。 我们通过评估算法如何改善用户在搜索质量相关性和用户行为信号( 如“ 添加到卡特 ” ) 方面的经验, 来衡量我们算法的影响。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
14+阅读 · 2018年4月18日
Arxiv
5+阅读 · 2018年3月16日
VIP会员
相关VIP内容
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员