Deep neural networks (DNNs) defy the classical bias-variance trade-off: adding parameters to a DNN that exactly interpolates its training data will typically improve its generalisation performance. Explaining the mechanism behind the benefit of such over-parameterisation is an outstanding challenge for deep learning theory. Here, we study the last layer representation of various deep architectures such as Wide-ResNets for image classification and find evidence for an underlying mechanism that we call *representation mitosis*: if the last hidden representation is wide enough, its neurons tend to split into groups which carry identical information, and differ from each other only by a statistically independent noise. Like in a mitosis process, the number of such groups, or ``clones'', increases linearly with the width of the layer, but only if the width is above a critical value. We show that a key ingredient to activate mitosis is continuing the training process until the training error is zero. Finally, we show that in one of the learning tasks we considered, a wide model with several automatically developed clones performs significantly better than a deep ensemble based on architectures in which the last layer has the same size as the clones.
翻译:深心神经网络(DNNs) 无视经典的偏差偏差取舍: 给 DNNN增加参数, 确切地将其培训数据插入内部, 会改善它的概括性表现。 解释这种超分化的好处背后的机制对于深层学习理论来说是一个突出的挑战。 在这里, 我们研究各种深层结构的最后一层代表结构, 如用于图像分类的宽度, 并找到我们称之为“ 代表性分裂” 的基本机制的证据 : 如果最后一个隐含的表达面足够宽, 其神经元往往分裂成一个组, 包含相同的信息, 并且只有统计上独立的噪音才不同。 就像一个线性过程一样, 这些组的数目, 或者“ 克隆”, 与层的宽度相比, 线性会增加, 但只有当宽度超过一个关键值时。 我们显示, 激活线性分裂的关键成分会持续到培训错误为零。 最后, 我们发现, 在一项我们考虑的学习任务中, 一个宽的模型, 有多个自动开发的克隆的宽度模型, 其表现得大大高于基于上层结构的深层。