Although convolutional neural networks (CNNs) showed remarkable results in many vision tasks, they are still strained by simple yet challenging visual reasoning problems. Inspired by the recent success of the Transformer network in computer vision, in this paper, we introduce the Recurrent Vision Transformer (RViT) model. Thanks to the impact of recurrent connections and spatial attention in reasoning tasks, this network achieves competitive results on the same-different visual reasoning problems from the SVRT dataset. The weight-sharing both in spatial and depth dimensions regularizes the model, allowing it to learn using far fewer free parameters, using only 28k training samples. A comprehensive ablation study confirms the importance of a hybrid CNN + Transformer architecture and the role of the feedback connections, which iteratively refine the internal representation until a stable prediction is obtained. In the end, this study can lay the basis for a deeper understanding of the role of attention and recurrent connections for solving visual abstract reasoning tasks.


翻译:虽然在很多视觉任务中,共生神经网络(CNNs)取得了显著成果,但它们仍然受到简单而富有挑战性的视觉推理问题的困扰。在计算机视觉中变换器网络最近取得成功的启发下,我们在本论文中引入了经常的视野变换器(RVVT)模型。由于反复连接的影响和推理任务中的空间关注,这个网络在SVRT数据集的相同视觉推理问题上取得了竞争性结果。空间和深度的权重共享使模型规范化,允许它使用少得多的自由参数学习,只使用28k个培训样本。全面融和研究证实了CNN+变换器混合结构的重要性和反馈连接的作用,这些结构反复完善了内部代表性,直到获得稳定的预测。最后,这一研究可以奠定基础,更深入地了解关注作用和反复连接对于解决视觉抽象推理任务的作用。

0
下载
关闭预览

相关内容

专知会员服务
34+阅读 · 2021年8月16日
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【机器推理可解释性】Machine Reasoning Explainability
专知会员服务
34+阅读 · 2020年9月3日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
【Google论文】ALBERT:自我监督学习语言表达的精简BERT
专知会员服务
23+阅读 · 2019年11月4日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
19+阅读 · 2020年12月23日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员