Given a set of $n$ input integers, the Equal Subset Sum problem asks us to find two distinct subsets with the same sum. In this paper we present an algorithm that runs in time $O^*(3^{0.387n})$ in the~average case, significantly improving over the $O^*(3^{0.488n})$ running time of the best known worst-case algorithm and the Meet-in-the-Middle benchmark of $O^*(3^{0.5n})$. Our algorithm generalizes to a number of related problems, such as the ``Generalized Equal Subset Sum'' problem, which asks us to assign a coefficient $c_i$ from a set $C$ to each input number $x_i$ such that $\sum_{i} c_i x_i = 0$. Our algorithm for the average-case version of this problem runs in~time $|C|^{(0.5-c_0/|C|)n}$ for some positive constant $c_0$, whenever $C=\{0, \pm 1, \dots, \pm d\}$ or $\{\pm 1, \dots, \pm d\}$ for some positive integer $d$ (with $O^*(|C|^{0.45n})$ when $|C|<10$). Our results extend to the~problem of finding ``nearly balanced'' solutions in which the target is a not-too-large nonzero offset $\tau$. Our approach relies on new structural results that characterize the probability that $\sum_{i} c_i x_i$ $=\tau$ has a solution $c \in C^n$ when $x_i$'s are chosen randomly; these results may be of independent interest. Our algorithm is inspired by the ``representation technique'' introduced by Howgrave-Graham and Joux. This requires several new ideas to overcome preprocessing hurdles that arise in the representation framework, as well as a novel application of dynamic programming in the solution recovery phase of the algorithm.


翻译:在设定了美元输入整数的情况下, Qeal Subset Sum 问题要求我们找到两个不同的子集, 其金额相同。 在本文中, 我们展示了一种计算法, 运行时间为: 美元( 3 ⁇ 0. 387n} 美元), 运行时间比 美元( 3 ⁇ 0. 488n} ) (美元) 最已知的最坏的算法和 Met- 中位基准 $( 3 ⁇ 0. 50n} ) 。 我们的算法一般化为一些相关问题, 比如“ 通用的 equetset Sum Sum” 问题, 要求我们从每个输入的美元中指定一个系数 $( 3 ⁇ ( 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 美元) 美元( 美元) 。 我们的平均算法的算法可能由时间 $ ( 0. 0. 0. 0. 0. 0. 0. ° C ) 美元 (n_ 美元 美元 美元 ) 解算一个正数( 美元) ( 美元) ( 美元) 美元) 美元) 以某种固定的算法的解算为 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Rectangular eigenvalue problems
Arxiv
0+阅读 · 2021年12月27日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员