We study the problem of solving Packing Integer Programs (PIPs) in the online setting, where columns in $[0,1]^d$ of the constraint matrix are revealed sequentially, and the goal is to pick a subset of the columns that sum to at most $B$ in each coordinate while maximizing the objective. Excellent results are known in the secretary setting, where the columns are adversarially chosen, but presented in a uniformly random order. However, these existing algorithms are susceptible to adversarial attacks: they try to "learn" characteristics of a good solution, but tend to over-fit to the model, and hence a small number of adversarial corruptions can cause the algorithm to fail. In this paper, we give the first robust algorithms for Packing Integer Programs, specifically in the recently proposed Byzantine Secretary framework. Our techniques are based on a two-level use of online learning, to robustly learn an approximation to the optimal value, and then to use this robust estimate to pick a good solution. These techniques are general and we use them to design robust algorithms for PIPs in the prophet model as well, specifically in the Prophet-with-Augmentations framework. We also improve known results in the Byzantine Secretary framework: we make the non-constructive results algorithmic and improve the existing bounds for single-item and matroid constraints.


翻译:我们研究在网上设置中解决包装 Integer 程序(PIPs)的问题,在网上设置中,限制矩阵的 $[0,1,1,d$] 列的柱子会按顺序披露,目标是在每一个坐标中挑选一个小栏子,最多等于$B$,同时最大限度地实现目标。在秘书设置中,各栏是对抗性选择的,但以统一的随机顺序呈现出优异的结果。然而,这些现有算法很容易受到对抗性攻击:它们试图“清除”一个好解决方案的特征,但往往过于适合模型,因此,少数对抗性腐败可能导致算法失败。在本文中,我们为包装 Integer 程序提供了第一批强健的算法,特别是在最近提议的Byzantine 秘书框架中。我们的技术基于两级的在线学习,强有力地学习对最佳价值的近似值,然后使用这种稳健的估计来选择一个好的解决办法。这些技术是一般的,我们用它们来为预想模型中的PIPs设计稳健的算法,我们用这些方法可以导致算法失败。在预言型模型中,具体地改进了我们所知道的预想式框架。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员