Semantic segmentation has made significant progress in recent years thanks to deep neural networks, but the common objective of generating a single segmentation output that accurately matches the image's content may not be suitable for safety-critical domains such as medical diagnostics and autonomous driving. Instead, multiple possible correct segmentation maps may be required to reflect the true distribution of annotation maps. In this context, stochastic semantic segmentation methods must learn to predict conditional distributions of labels given the image, but this is challenging due to the typically multimodal distributions, high-dimensional output spaces, and limited annotation data. To address these challenges, we propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models. Our model is conditioned to the input image, enabling it to generate multiple segmentation label maps that account for the aleatoric uncertainty arising from divergent ground truth annotations. Our experimental results show that CCDM achieves state-of-the-art performance on LIDC, a stochastic semantic segmentation dataset, and outperforms established baselines on the classical segmentation dataset Cityscapes.
翻译:近年来,深度神经网络为语义分割带来了显著进展,但常见的生成单个能够准确匹配图像内容的分割输出的目标不适合于医学诊断和自动驾驶等安全关键性领域。相反,为反映注释地图的真实分布可能需要多个可能正确的分割图像。在这种情况下,随机语义分割方法必须学习预测给定图像的标签的条件分布,但由于通常是多模态分布,高维输出空间和有限的注释数据,这是具有挑战性的。为了解决这些挑战,我们提出了一种基于去噪扩散概率模型的条件分类扩散模型(CCDM)用于语义分割。我们的模型以输入图像为条件,能够生成多个分割标签地图,以反映源于不同地面真相注释的不确定性。我们的实验结果展示了CCDM在LIDC(一种随机语义分割数据集)上达到了最先进的性能,并在经典分割数据集Cityscapes上优于现有基线模型。