In lifelong learning systems, especially those based on artificial neural networks, one of the biggest obstacles is the severe inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this article, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the immensely popular back-propagation of errors. Grounded in the neurocognitive theory of predictive processing, our model adapts its synapses in a biologically-plausible fashion, while another, complementary neural system rapidly learns to direct and control this cortex-like structure by mimicking the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting as compared to standard neural models and outperforms a wide swath of previously proposed methods even though it is trained across task datasets in a stream-like fashion. The promising performance of our complementary system on benchmarks, e.g., SplitMNIST, Split Fashion MNIST, and Split NotMNIST, offers evidence that by incorporating mechanisms prominent in real neuronal systems, such as competition, sparse activation patterns, and iterative input processing, a new possibility for tackling the grand challenge of lifelong machine learning opens up.


翻译:在终身学习系统中,特别是那些以人工神经网络为基础的系统,最大的障碍之一是在遇到新信息时严重没有能力保留旧知识,这种现象被称为灾难性的遗忘。在本篇文章中,我们提出了一种新的连接型结构,即序列神经编码网络,在从数据点流中学习时,强烈地可以忘记,与今天的网络不同,我们没有通过极受欢迎的对错误的反向分析学习。基于预测处理神经认知理论,我们的模型以生物可视的方式调整其突触,而另一个互补的神经系统则迅速学习如何通过模拟basal banglia的任务执行控制功能来指导和控制这种皮层结构。在我们的实验中,我们证明我们的自我组织系统与标准神经模型相比,远没有被遗忘,而且超越了先前提出的方法的广广度,尽管它以类似的方式对任务数据集进行了培训,它以生物可视的方式调整,而另一个互补的神经神经系统系统系统迅速学会,通过模拟任务执行模式来引导和控制这种皮层结构结构。我们通过Slipal Stamp Stimal Strial Stimal Istiming 系统、Slistal imal iming Striftact Stistrubildal Idal 和Sild Stildstildent imststitutegildal 来提供这种系统, 这样的系统在学习系统, 这样的系统,通过Silviolviolviolviolviolviolviolviolviolviolviold 和Stigild 和Sligild Fs 和Sligild Stolviolviolviolvicil 等新的学习系统,通过Stistem 这样的系统,通过Stistemments 和Stisteild 等学习系统,Stiglistital IST,Stistem 和Stistem 系统,Stistem 和Stistem 和Stistemmmmmal 系统,通过Sticil 这样的系统,通过Stistemal 和Stistemal 和Stistem 和Stistem 和Stistem stil 和Sticildal ISTIFISTISTAs 这样的系统,将Stist

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
115+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年9月12日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年9月12日
Top
微信扫码咨询专知VIP会员