Modern computing platforms for robotics applications comprise a set of heterogeneous elements, e.g., multi-core CPUs, embedded GPUs, and FPGAs. FPGAs are reprogrammable hardware devices that allow for fast and energy-efficient computation of many relevant tasks in robotics. ROS is the de-facto programming standard for robotics and decomposes an application into a set of communicating nodes. ReconROS is a previous approach that can map complete ROS nodes into hardware for acceleration. Since ReconROS relies on standard ROS communication layers, exchanging data between hardware-mapped nodes can lead to a performance bottleneck. This paper presents fpgaDDS, a lean data distribution service for hardware-mapped ROS 2 nodes. fpgaDDS relies on a customized and statically generated streaming-based communication architecture. We detail this communication architecture with its components and outline its benefits. We evaluate fpgaDDS on a test example and a larger autonomous vehicle case study. Compared to a ROS 2 application in software, we achieve speedups of up to 13.34 and reduce jitter by two orders of magnitude.


翻译:机器人应用的现代计算平台由多种元素组成,例如多核心CPU、嵌入的GPU和FPGAs。 FPGAs是可重新编程的硬件设备,可以快速和节能地计算机器人中的许多相关任务。ROS是机器人应用的脱facto编程标准,可以将一个应用程序分解成一组通信节点。ReconROS是以前的一种方法,可以将完整的ROS节点映射成硬件加速的硬件。由于ReconROS依靠标准的ROS通信层,硬件制成的节点之间交换数据可以导致一个性能瓶颈。本文展示了FpgaDDS, 硬件制成的ROS 2 节点的精密数据发布服务。 fpgaDDS 依赖于一个定制和静态生成的流通信结构。我们详细介绍了该通信结构的组件,并概述了其效益。我们用一个测试示例来评估fpgaDDS, 和一个更大的自主车辆案例研究。与一个 ROS 2 应用程序相比,我们实现了13.34 级的加速度, 并减少 jIT 。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2022年11月1日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员