Semantic communications are expected to accomplish various semantic tasks with relatively less spectrum resource by exploiting the semantic feature of source data. To simultaneously serve both the data transmission and semantic tasks, joint data compression and semantic analysis has become pivotal issue in semantic communications. This paper proposes a deep separate source-channel coding (DSSCC) framework for the joint task and data oriented semantic communications (JTD-SC) and utilizes the variational autoencoder approach to solve the rate-distortion problem with semantic distortion. First, by analyzing the Bayesian model of the DSSCC framework, we derive a novel rate-distortion optimization problem via the Bayesian inference approach for general data distributions and semantic tasks. Next, for a typical application of joint image transmission and classification, we combine the variational autoencoder approach with a forward adaption scheme to effectively extract image features and adaptively learn the density information of the obtained features. Finally, an iterative training algorithm is proposed to tackle the overfitting issue of deep learning models. Simulation results reveal that the proposed scheme achieves better coding gain as well as data recovery and classification performance in most scenarios, compared to the classical compression schemes and the emerging deep joint source-channel schemes.
翻译:语义通信预计将通过利用源数据中的语义特征完成各种语义任务,使用相对较少的频谱资源完成各种语义任务; 为了同时服务于数据传输和语义任务,联合数据压缩和语义分析已成为语义通信中的关键问题; 本文提议为联合任务和以数据为导向的语义通信(JTD-SC)建立一个深度独立的源-渠道编码框架(DSSC),并使用变式自动编码方法解决使用语义扭曲的频率扭曲问题。 首先,通过分析DSSC框架的巴伊西亚模型,我们通过Bayesian推论法为一般数据传播和语义任务得出新的调控调优化问题。 下一步,为了典型地应用联合图像传输和分类,我们将变式自动编码方法与前方调整方案结合起来,以有效提取图像特征并适应性地学习所获取的语义特征的密度信息。 最后,我们提出了一种迭代培训算法,以解决深层次学习模型的过度问题。 模拟结果显示,通过Bayesian推算法, 最先进的模型将改进了正在形成的计划,将改进的恢复和正在形成的数据源,使正在形成的计划成为更好的数据升级计划成为更好的共同分类。</s>