Some recent artificial neural networks (ANNs) claim to model aspects of primate neural and human performance data. Their success in object recognition is, however, dependent on exploiting low-level features for solving visual tasks in a way that humans do not. As a result, out-of-distribution or adversarial input is often challenging for ANNs. Humans instead learn abstract patterns and are mostly unaffected by many extreme image distortions. We introduce a set of novel image transforms inspired by neurophysiological findings and evaluate humans and ANNs on an object recognition task. We show that machines perform better than humans for certain transforms and struggle to perform at par with humans on others that are easy for humans. We quantify the differences in accuracy for humans and machines and find a ranking of difficulty for our transforms for human data. We also suggest how certain characteristics of human visual processing can be adapted to improve the performance of ANNs for our difficult-for-machines transforms.
翻译:近期的一些人工神经网络(ANNs)声称模拟灵长类神经和人类表现数据的某些方面。它们在对象识别方面的成功,然而取决于以一种人类不同的方式利用低级特征来解决视觉任务。因此,超出分布或对抗性输入通常对ANNS具有挑战性。相反,人类学习抽象模式,并且大多数情况下会对许多极端的图像扭曲感到不受影响。 我们介绍了一组受神经生理学研究启发的新型图像转换,并评估人类和人工神经网络在目标识别任务上的表现。 我们发现机器在某些变换上比人类表现更好,但在对于人来说较容易的变换上表现跟人差不多。 我们量化了人类和机器的准确度差异,并为我们的数据提供了难以转换的难度排名。 我们还提出了如何适应人类视觉处理的某些特征以提高ANNS在难以实现转换的性能。