Various precoders have been recently studied by the wireless community to combat the channel fading effects. Two prominent precoders are implemented with the discrete Fourier transform (DFT) and Walsh-Hadamard transform (WHT). The WHT precoder is implemented with less complexity since it does not need complex multiplications. Also, spreading can be applied sparsely to decrease the transceiver complexity, leading to sparse DFT (SDFT) and sparse Walsh-Hadamard (SWH). Another relevant topic is the design of iterative receivers that deal with inter-symbol-interference (ISI). In particular, many detectors based on expectation propagation (EP) have been proposed recently for channels with high levels of ISI. An alternative is the maximum a-posterior (MAP) detector, although it leads to unfeasible high complexity in many cases. In this paper, we provide a relatively low-complexity \textcolor{black}{computation} of the MAP detector for the SWH. We also propose two \textcolor{black}{feasible methods} based on the Log-MAP and Max-Log-MAP. Additionally, the DFT, SDFT and SWH precoders are compared using an EP-based receiver with one-tap FD equalization. Lastly, SWH-Max-Log-MAP is compared to the (S)DFT with EP-based receiver in terms of performance and complexity. The results show that the proposed SWH-Max-Log-MAP has a better performance and complexity trade-off for QPSK and 16-QAM under highly selective channels, but has unfeasible complexity for higher QAM orders.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员