The task of locating and classifying different types of vehicles has become a vital element in numerous applications of automation and intelligent systems ranging from traffic surveillance to vehicle identification and many more. In recent times, Deep Learning models have been dominating the field of vehicle detection. Yet, Bangladeshi vehicle detection has remained a relatively unexplored area. One of the main goals of vehicle detection is its real-time application, where `You Only Look Once' (YOLO) models have proven to be the most effective architecture. In this work, intending to find the best-suited YOLO architecture for fast and accurate vehicle detection from traffic images in Bangladesh, we have conducted a performance analysis of different variants of the YOLO-based architectures such as YOLOV3, YOLOV5s, and YOLOV5x. The models were trained on a dataset containing 7390 images belonging to 21 types of vehicles comprising samples from the DhakaAI dataset, the Poribohon-BD dataset, and our self-collected images. After thorough quantitative and qualitative analysis, we found the YOLOV5x variant to be the best-suited model, performing better than YOLOv3 and YOLOv5s models respectively by 7 & 4 percent in mAP, and 12 & 8.5 percent in terms of Accuracy.
翻译:不同类型车辆的定位和分类任务已成为从交通监视到车辆识别和许多其他许多车辆识别等多种自动化和智能系统应用中的一个关键要素。近些年来,深学习模型一直主导着车辆探测领域。然而,孟加拉国的车辆探测仍是一个相对未探索的领域。车辆探测的主要目标之一是其实时应用,在那里“你只看一次”(YOLO)模型已证明是最有效的结构。在这项工作中,为了从孟加拉国的交通图像中找到最适合的YOLO结构以快速和准确地探测车辆,我们对以YOLO为基础的建筑的不同变种进行了性能分析,如YOLOV3、YOLOV5和YOLOV5x。这些模型在包含属于21种车辆的7390个图像的数据集上进行了培训,其中包括来自达卡伊数据集、Poribohon-BD数据集和我们自我收集的图像。经过彻底的定量和定性分析后,我们发现YOLOV5x的变种变种为最佳和最佳的ALV3模型,在YOL5和AVO5模型中,这些变种为最佳和最佳的AVO5。