Panel-based, kernel-split quadrature is currently one of the most efficient methods available for accurate evaluation of singular and nearly singular layer potentials in two dimensions. However, it can fail completely for the layer potentials belonging to the modified Helmholtz, biharmonic and Stokes equations. These equations depend on a parameter, denoted $\alpha$, and kernel-split quadrature loses its accuracy rapidly when this parameter grows beyond a certain threshold. This paper describes an algorithm that remedies this problem, using per-target adaptive sampling of the source geometry. The refinement is carried out through recursive bisection, with a carefully selected rule set. This maintains accuracy for a wide range of the parameter $\alpha$, at an increased cost that scales as $\log\alpha$. Using this algorithm allows kernel-split quadrature to be both accurate and efficient for a much wider range of problems than previously possible.
翻译:以面板为主的内核- 内核- 内核- 内分方形是目前可用于准确评估单层和近乎单层潜力的两个维度的最有效方法之一。 但是, 对于属于修改后的赫尔摩尔茨、双声波和斯托克斯等方程式的层潜力, 它可以完全失败。 这些方程式取决于参数, 以美元表示, 当该参数超过某一阈值时, 内核- 内核分裂方形会迅速失去其准确性 。 本文描述了一种算法, 利用源几何的每个目标的适应抽样来解决这个问题。 精细选择的规则, 精细的精细通过递细的两部分进行精细的完善。 这保持了范围很广的参数 $\ 阿尔法$ 的精确性, 其成本将增加为 $\ log\ alpha$。 使用此算法可以使内核- 二次方形的二次方形在比以前可能更广泛的问题上既准确又有效。