Our brains extract durable, generalizable knowledge from transient experiences of the world. Artificial neural networks come nowhere close to this ability. When tasked with learning to classify objects by training on non-repeating video frames in temporal order (online stream learning), models that learn well from shuffled datasets catastrophically forget old knowledge upon learning new stimuli. We propose a new continual learning algorithm, Compositional Replay Using Memory Blocks (CRUMB), which mitigates forgetting by replaying feature maps reconstructed by combining generic parts. CRUMB concatenates trainable and re-usable "memory block" vectors to compositionally reconstruct feature map tensors in convolutional neural networks. Storing the indices of memory blocks used to reconstruct new stimuli enables memories of the stimuli to be replayed during later tasks. This reconstruction mechanism also primes the neural network to minimize catastrophic forgetting by biasing it towards attending to information about object shapes more than information about image textures, and stabilizes the network during stream learning by providing a shared feature-level basis for all training examples. These properties allow CRUMB to outperform an otherwise identical algorithm that stores and replays raw images, while occupying only 3.6% as much memory. We stress-tested CRUMB alongside 13 competing methods on 7 challenging datasets. To address the limited number of existing online stream learning datasets, we introduce 2 new benchmarks by adapting existing datasets for stream learning. With only 3.7-4.1% as much memory and 15-43% as much runtime, CRUMB mitigates catastrophic forgetting more effectively than the state-of-the-art. Our code is available at https://github.com/MorganBDT/crumb.git.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员