This paper summarizes the Crowdsensing-based Road Damage Detection Challenge (CRDDC), a Big Data Cup organized as a part of the IEEE International Conference on Big Data'2022. The Big Data Cup challenges involve a released dataset and a well-defined problem with clear evaluation metrics. The challenges run on a data competition platform that maintains a real-time online evaluation system for the participants. In the presented case, the data constitute 47,420 road images collected from India, Japan, the Czech Republic, Norway, the United States, and China to propose methods for automatically detecting road damages in these countries. More than 60 teams from 19 countries registered for this competition. The submitted solutions were evaluated using five leaderboards based on performance for unseen test images from the aforementioned six countries. This paper encapsulates the top 11 solutions proposed by these teams. The best-performing model utilizes ensemble learning based on YOLO and Faster-RCNN series models to yield an F1 score of 76% for test data combined from all 6 countries. The paper concludes with a comparison of current and past challenges and provides direction for the future.
翻译:本文总结了作为国际EEEE国际大数据会议的一部分而组织的大型数据杯(CRDDC)“基于人群的公路损害探测挑战”(CRDDC),这是一个大型数据杯,“大数据杯”的挑战涉及一个释放的数据集和一个清晰的评估指标的明确界定的问题。挑战存在于一个数据竞争平台上,该平台为参与者维持一个实时在线评价系统。在所介绍的案例中,数据构成从印度、日本、捷克共和国、挪威、美国和中国收集的47 420个公路图像,以提出自动探测这些国家公路损害的方法。来自19个国家的60多个小组登记参加这次竞争。所提交的解决方案是根据上述6个国家的无形测试图像的性能,用5个头板进行评估的。本文概括了这些小组提出的11个顶级解决方案。最佳模型利用了基于YOLO和快速RCNNN系列模型的组合学习,得出76%的F1分,用于所有6个国家的测试数据。文件最后对当前和过去的挑战进行了比较,并为未来提供了方向。