This paper advances the theory and practice of Domain Generalization (DG) in machine learning. We consider the typical DG setting where the hypothesis is composed of a representation mapping followed by a labeling function. Within this setting, the majority of popular DG methods aim to jointly learn the representation and the labeling functions by minimizing a well-known upper bound for the classification risk in the unseen domain. In practice, however, methods based on this theoretical upper bound ignore a term that cannot be directly optimized due to its dual dependence on both the representation mapping and the unknown optimal labeling function in the unseen domain. To bridge this gap between theory and practice, we introduce a new upper bound that is free of terms having such dual dependence, resulting in a fully optimizable risk upper bound for the unseen domain. Our derivation leverages classical and recent transport inequalities that link optimal transport metrics with information-theoretic measures. Compared to previous bounds, our bound introduces two new terms: (i) the Wasserstein-2 barycenter term that aligns distributions between domains, and (ii) the reconstruction loss term that assesses the quality of representation in reconstructing the original data. Based on this new upper bound, we propose a novel DG algorithm named Wasserstein Barycenter Auto-Encoder (WBAE) that simultaneously minimizes the classification loss, the barycenter loss, and the reconstruction loss. Numerical results demonstrate that the proposed method outperforms current state-of-the-art DG algorithms on several datasets.


翻译:暂无翻译

0
下载
关闭预览

相关内容

《AI中毒攻击》34页slides
专知会员服务
25+阅读 · 2022年10月17日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月6日
Arxiv
0+阅读 · 2023年7月5日
VIP会员
相关VIP内容
《AI中毒攻击》34页slides
专知会员服务
25+阅读 · 2022年10月17日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员