We propose Scale-aware AutoAug to learn data augmentation policies for object detection. We define a new scale-aware search space, where both image- and box-level augmentations are designed for maintaining scale invariance. Upon this search space, we propose a new search metric, termed Pareto Scale Balance, to facilitate search with high efficiency. In experiments, Scale-aware AutoAug yields significant and consistent improvement on various object detectors (e.g., RetinaNet, Faster R-CNN, Mask R-CNN, and FCOS), even compared with strong multi-scale training baselines. Our searched augmentation policies are transferable to other datasets and box-level tasks beyond object detection (e.g., instance segmentation and keypoint estimation) to improve performance. The search cost is much less than previous automated augmentation approaches for object detection. It is notable that our searched policies have meaningful patterns, which intuitively provide valuable insight for human data augmentation design. Code and models will be available at https://github.com/Jia-Research-Lab/SA-AutoAug.
翻译:我们建议“Scale-aware AutoAug” 学习物体探测的数据增强政策。 我们定义了一个新的“Scale-aware AutoAug”搜索空间, 该空间的图像和框级增强空间都设计用于维持规模变化。 在此搜索空间中, 我们提出了一个新的搜索指标, 名为“ Pareto Scal 平衡 ”, 以高效地促进搜索。 在实验中, 规模增强AutoAug 使各种物体探测器( 如RetinaNet、快速R-CNN、Mask R-CNN和FCOS) 取得了显著和一致的改进, 即使与强大的多尺度培训基线相比也是如此。 我们的搜索增强政策可以转移到其他数据集和框级任务( 如实例分割和关键点估计 ), 以提高性能。 搜索成本远低于先前的物体探测自动增强方法。 值得注意的是, 我们的搜索政策具有有意义的模式, 直接为人类数据增强设计提供了宝贵的洞察力。 代码和模型将在 https://github.com/ Jia-Reearch-Lab/SA-AutAutAug-Aug) 。