The universal-set naive Bayes classifier (UNB)~\cite{Komiya:13}, defined using likelihood ratios (LRs), was proposed to address imbalanced classification problems. However, the LR estimator used in the UNB overestimates LRs for low-frequency data, degrading the classification performance. Our previous study~\cite{Kikuchi:19} proposed an effective LR estimator even for low-frequency data. This estimator uses regularization to suppress the overestimation, but we did not consider imbalanced data. In this paper, we integrated the estimator with the UNB. Our experiments with imbalanced data showed that our proposed classifier effectively adjusts the classification scores according to the class balance using regularization parameters and improves the classification performance.


翻译:使用概率比率(LRs)定义的通用天天天白贝亚分类器(UNB) ⁇ cite{Komiya:13})被提议解决不平衡的分类问题。然而,UNB中高估低频数据的LRs估计值,降低了分类性能。我们先前的研究“cite{Kikuchi:19}提议了一个有效的LRS估计值,即使低频数据也是如此。这个估计值利用正规化来抑制高估,但我们没有考虑不平衡的数据。在本文中,我们把估计值与UNB合并。我们用不平衡数据进行的实验表明,我们提议的分类员利用正规化参数有效地调整了分类的分数,并改进了分类性能。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员