Multi-object state estimation is a fundamental problem for robotic applications where a robot must interact with other moving objects. Typically, other objects' relevant state features are not directly observable, and must instead be inferred from observations. Particle filtering can perform such inference given approximate transition and observation models. However, these models are often unknown a priori, yielding a difficult parameter estimation problem since observations jointly carry transition and observation noise. In this work, we consider learning maximum-likelihood parameters using particle methods. Recent methods addressing this problem typically differentiate through time in a particle filter, which requires workarounds to the non-differentiable resampling step, that yield biased or high variance gradient estimates. By contrast, we exploit Fisher's identity to obtain a particle-based approximation of the score function (the gradient of the log likelihood) that yields a low variance estimate while only requiring stepwise differentiation through the transition and observation models. We apply our method to real data collected from autonomous vehicles (AVs) and show that it learns better models than existing techniques and is more stable in training, yielding an effective smoother for tracking the trajectories of vehicles around an AV.
翻译:多球状态估计是机器人应用的根本问题,因为机器人必须与其他移动物体互动。 通常, 其它物体的相关状态特征无法直接观测, 而且必须从观察中推断出来。 粒子过滤可以根据近似过渡和观察模型进行这种推论。 但是, 这些模型通常不具有先验性, 产生一个困难的参数估计问题, 因为观测同时带有过渡和观察噪音。 在这项工作中, 我们考虑使用粒子方法学习最大相似参数。 解决这一问题的最近方法通常通过粒子过滤器的时间来区分, 这需要在不可区分的再采样步骤上找到一些可产生偏差或高差异梯度估计的变通办法。 相反, 我们利用费雪人的身份获得分函数( 日志概率梯度) 的粒度近似度, 得出低差异估计, 而只需要在转换和观察模型中逐步区分。 我们用我们的方法对从自动飞行器( 自动飞行器) 收集到的真实数据进行了应用, 并显示它比现有技术更好的模型, 并且更稳定地进行训练, 产生一种有效的光滑动功能 。