Spiking Neural Networks (SNN) are an emerging type of biologically plausible and efficient Artificial Neural Network (ANN). This work presents the development of a hardware accelerator for a SNN for high-performance inference, targeting a Xilinx Artix-7 Field Programmable Gate Array (FPGA). The model used inside the neuron is the Leaky Integrate and Fire (LIF). The execution is clock-driven, meaning that the internal state of the neuron is updated at every clock cycle, even in absence of spikes. The inference capabilities of the accelerator are evaluated using the MINST dataset. The training is performed offline on a full precision model. The results show a good improvement in performance if compared with the state-of-the-art accelerators, requiring 215{\mu}s per image. The energy consumption is slightly higher than the most optimized design, with an average value of 13mJ per image. The test design consists of a single layer of four-hundred neurons and uses around 40% of the available resources on the FPGA. This makes it suitable for a time-constrained application at the edge, leaving space for other acceleration tasks on the FPGA.
翻译:Spik Spik Neal 网络(SNN) 是一种新兴的生物合理和有效的人工神经网络(ANN) 类型。 这项工作展示了为 SNN 开发一个硬件加速器, 用于高性能推断, 目标是Xilinx Artix-7 Field 可编程门阵列( FPGA ) 。 神经内部使用的模型是“ 激光集成和火焰” 。 执行是按时钟驱动的, 意味着神经的内部状态在每一个时钟周期都更新, 即使没有钉钉钉。 加速器的推导能力是使用 MINST 数据集进行评估的。 培训是在完全精确模型下进行的。 结果表明, 如果与最先进的加速器相比, 需要每个图像215 mmu 。 能量消耗略高于最优化的设计, 每图像平均值为13 mJ 。 测试设计由四百个神经元组成的单层组成, 并使用40% 的可用资源在空间边际空间加速器上, 将它用于其他加速度的FA 。