To solve complex real-world problems, heuristics and concept-based approaches can be used in order to incorporate information into the problem. In this study, a concept-based approach called variable functioning Fx is introduced to reduce the optimization variables and narrow down the search space. In this method, the relationships among one or more subset of variables are defined with functions using information prior to optimization; thus, instead of modifying the variables in the search process, the function variables are optimized. By using problem structure analysis technique and engineering expert knowledge, the $Fx$ method is used to enhance the steel frame design optimization process as a complex real-world problem. The proposed approach is coupled with particle swarm optimization and differential evolution algorithms and used for three case studies. The algorithms are applied to optimize the case studies by considering the relationships among column cross-section areas. The results show that $Fx$ can significantly improve both the convergence rate and the final design of a frame structure, even if it is only used for seeding.
翻译:为了解决复杂的现实世界问题,可以使用基于理论和概念的方法将信息纳入问题。在本研究中,引入了一种称为可变功能Fx的基于概念的方法,以减少优化变数变量,缩小搜索空间。在这种方法中,一个或一个以上变数子之间的关系与使用优化前信息功能的函数定义;因此,在搜索过程中,功能变量不是修改变量,而是优化了。通过使用问题结构分析技术和工程专家知识,用$Fx$的方法将钢框架设计优化进程作为一个复杂的现实世界问题加以强化。拟议方法与粒子群优化和差异进化算法相结合,并用于三个案例研究。这些算法用于通过考虑列交叉区域之间的关系优化案例研究。结果显示,$Fx$可以大大改善框架结构的趋同率和最终设计,即使它只用于种子。