We propose a holistic framework for constructing sensitivity measures for any elicitable functional $T$ of a response variable. The sensitivity measures, termed score-based sensitivities, are constructed via scoring functions that are (strictly) consistent for $T$. These score-based sensitivities quantify the relative improvement in predictive accuracy when available information, e.g., from explanatory variables, is used ideally. We establish intuitive and desirable properties of these sensitivities and discuss advantageous choices of scoring functions leading to scale-invariant sensitivities. Since elicitable functionals typically possess rich classes of (strictly) consistent scoring functions, we demonstrate how Murphy diagrams can provide a picture of all score-based sensitivity measures. We discuss the family of score-based sensitivities for the mean functional (of which the Sobol indices are a special case) and risk functionals such as Value-at-Risk, and the pair Value-at-Risk and Expected Shortfall. The sensitivity measures are illustrated using numerous examples, including the Ishigami--Homma test function. In a simulation study, estimation of score-based sensitivities for a non-linear insurance portfolio is performed using neural nets.
翻译:我们提议了一个整体框架,用于为反应变量中任何可产生功能性美元构建敏感度措施。敏感度措施,称为基于分数的敏感度,是通过(严格)一致的记分功能构建的。这些基于分数的敏感度量化了现有信息(例如,解释变量)的预测准确度的相对改进。我们建立这些敏感度的直观和理想特性,并讨论通过评分功能的有利选择导致规模变化性敏感度。由于可计量功能通常拥有丰富的(严格)一致的评分功能类别,因此我们展示了墨菲图表如何提供所有基于分数的敏感度措施。我们讨论了平均功能(苏博指数是其中的一个特殊情况)和风险功能(如价值对值对风险和预期短限等)基于分数的敏感度组合。我们用许多实例,包括Ishigami-Homma测试功能来说明敏感度措施。在模拟研究中,对非线性保险组合的分数敏感度进行了估算。