Highly accurate simulation of plasma transport is needed for the successful design and operation of magnetically confined fusion reactors. Unfortunately, the extreme anisotropy present in magnetized plasmas results in thin boundary layers that are expensive to resolve. This work investigates how mesh refinement strategies might reduce that expense to allow for more efficient simulation. It is first verified that higher order discretization only realizes the proper rate of convergence once the mesh resolves the thin boundary layer, motivating the focusing of refinement on the boundary layer. Three mesh refinement strategies are investigated: one that focuses the refinement across the layer by using rectangular elements with a ratio equal to the boundary layer width, one that allows for exponential growth in mesh spacing away from the layer, and one adaptive strategy utilizing the established Zienkiewicz and Zhu error estimator. Across 4 two-dimensional test cases with high anisotropy, the adaptive mesh refinement strategy consistently achieves the same accuracy as uniform refinement using orders of magnitude less degrees of freedom. In the test case where the magnetic field is aligned with the mesh, the other refinement strategies also show substantial improvement in efficiency. This work also includes a discussion generalizing the results to larger magnetic anisotropy ratios and to three-dimensional problems. It is shown that isotropic mesh refinement requires degrees of freedom on the order of either the layer width (2D) or the square of the layer width (3D), whereas anisotropic refinement requires a number on the order of the log of layer width for all dimensions. It is also shown that the number of conjugate gradient iterations scales as a power of layer width when preconditioned with algebraic multigrid, whereas the number is independent of layer width when preconditioned with ILU.
翻译:磁性聚变反应堆的成功设计和运行需要对等离子传输进行高度精确的模拟。 不幸的是,磁性等离子体中存在的极端反动性粒子导致薄的边界层的解决费用昂贵。 这项工作调查了网状精细战略如何降低费用以便进行更有效的模拟。 首先核实的是, 高顺序分解只有在网状解决了薄边界层之后, 才能实现适当的趋同率, 从而促使对边界层进行精细的精细。 调查了三种网状精细战略: 一种是利用与边界层宽比的矩形元素来突出整个层的精细细度, 一种是允许离层间间间间间间间间间快速增长, 另一种是利用已建立的 ZienkiLwicz 和 Zhu 错误估测器的调整战略。 在网状层平面平层平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平层平层平层平层平层平层平层平层平平层平层平层平层平层平层平平平平平平平平平层平平平平平层平平平平平平平平平平平平平层平平平平平平平平平平平平平层平平平平平平平平平平平平层平平平平平平平平平平平平平平层平平平平平平平平层平平平平平平平平平平平层平平平平平平平平平平平平平层平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平平,平平平平平平平平平平平平平平平平平平平平平平平平平