The convolutional layer and loss function are two fundamental components in deep learning. Because of the success of conventional deep learning kernels, the less versatile Gabor kernels become less popular despite the fact that they can provide abundant features at different frequencies, orientations, and scales with much fewer parameters. For existing loss functions for multi-class image segmentation, there is usually a tradeoff among accuracy, robustness to hyperparameters, and manual weight selections for combining different losses. Therefore, to gain the benefits of using Gabor kernels while keeping the advantage of automatic feature generation in deep learning, we propose a fully trainable Gabor-based convolutional layer where all Gabor parameters are trainable through backpropagation. Furthermore, we propose a loss function based on the Pearson's correlation coefficient, which is accurate, robust to learning rates, and does not require manual weight selections. Experiments on 43 3D brain magnetic resonance images with 19 anatomical structures show that, using the proposed loss function with a proper combination of conventional and Gabor-based kernels, we can train a network with only 1.6 million parameters to achieve an average Dice coefficient of 83%. This size is 44 times smaller than the original V-Net which has 71 million parameters. This paper demonstrates the potentials of using learnable parametric kernels in deep learning for 3D segmentation.
翻译:革命层和损失函数是深层学习的两个基本组成部分。 由于传统深层学习核心的成功, 较少多用途的加博内核不再那么受欢迎, 尽管它们能够在不同频率、 方向和比例上提供丰富特征, 且参数要少得多。 对于多级图像分割的现有损失函数, 通常在精确度、 强度和超光度之间有一个权衡, 以及将不同损失组合在一起的人工重量选择之间有一个权衡。 因此, 为了获得使用加博内核的好处, 同时在深层学习中保持自动生成特征的优势, 我们提议一个完全可训练的加博内核共生层, 其中所有加博参数都可以通过反向调整来训练。 此外, 我们提出一个基于Pearson相关系数的亏损函数, 准确性、 强于学习速度, 不需要人工加权选择。 实验43 D 3 脑磁共振动图像与19个解剖结构表明, 利用拟议的损失函数, 将常规和加博内核内核生成的特性生成, 我们用原始的Gabor 平面参数来训练一个网络, 183 。 这个原始的网络只能用44- 10万个平均参数, 。