We introduce and demonstrate a semi-empirical procedure for determining approximate objective functions suitable for optimizing arbitrarily parameterized proposal distributions in MCMC methods. Our proposed Ab Initio objective functions consist of the weighted combination of functions following constraints on their global optima and of coordinate invariance that we argue should be upheld by general measures of MCMC efficiency for use in proposal optimization. The coefficients of Ab Initio objective functions are determined so as to recover the optimal MCMC behavior prescribed by established theoretical analysis for chosen reference problems. Our experimental results demonstrate that Ab Initio objective functions maintain favorable performance and preferable optimization behavior compared to existing objective functions for MCMC optimization when optimizing highly expressive proposal distributions. We argue that Ab Initio objective functions are sufficiently robust to enable the confident optimization of MCMC proposal distributions parameterized by deep generative networks that extend beyond the traditional limitations of individual MCMC schemes.
翻译:我们引入并展示了半经验性程序,以确定适合优化MCMC方法中任意参数化建议分布的近似客观功能。我们提议的Ab Initio目标功能包括:在限制其全球选择和缺乏协调的情况下,将各种功能加权组合起来,我们认为,应当通过MCM效率的一般措施加以支持,以便用于提案优化。Ab Initio目标功能的系数得到确定,以便恢复既定理论分析为选定参考问题所规定的最佳MCMC行为。我们的实验结果表明,Ab Intio目标功能在优化高清晰度建议分布时,保持优于MCMC现有客观功能的优异性,并优于MMC优化现有客观功能。我们说,Ab Initio目标功能足够强大,能够自信地优化MMC建议分布,其参数由超越单个MC计划传统限制的深层基因化网络加以调整。