The work provides an exhaustive comparison of some representative families of topology optimization methods for 3D structural optimization, such as the Solid Isotropic Material with Penalization (SIMP), the Level-set, the Bidirectional Evolutionary Structural Optimization (BESO), and the Variational Topology Optimization (VARTOP) methods. The main differences and similarities of these approaches are then highlighted from an algorithmic standpoint. The comparison is carried out via the study of a set of numerical benchmark cases using industrial-like fine-discretization meshes (around 1 million finite elements), and Matlab as the common computational platform, to ensure fair comparisons. Then, the results obtained for every benchmark case with the different methods are compared in terms of computational cost, topology quality, achieved minimum value of the objective function, and robustness of the computations (convergence in objective function and topology). Finally, some quantitative and qualitative results are presented, from which, an attempt of qualification of the methods, in terms of their relative performance, is done.


翻译:这项工作对三维结构优化的一些有代表性的地形优化方法进行了详尽的比较,例如:Solid Istotrotic Macific Pritics with Crimination(SIMP),等级设置,双向进化结构优化(BESO),以及变化式地形优化(VARTOP)方法。然后从算法的角度强调了这些方法的主要差异和相似之处。比较是通过研究一组数字基准案例进行的,这些案例使用工业类微分化杂质(约100万个限定元素)和马特拉布作为共同计算平台,以确保公平比较。然后,对使用不同方法的每一个基准案例所取得的结果进行了计算成本、表层质量、客观功能达到的最低价值和计算稳健性(客观功能和表层的一致)等比较。最后,介绍了一些定量和定性结果,从这些结果中尝试了方法的相对性能的定性。

0
下载
关闭预览

相关内容

【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月5日
VIP会员
相关VIP内容
【KDD2020教程】多模态网络表示学习
专知会员服务
130+阅读 · 2020年8月26日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
已删除
将门创投
4+阅读 · 2018年7月31日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员