Automated detection of retinal structures, such as retinal vessels (RV), the foveal avascular zone (FAZ), and retinal vascular junctions (RVJ), are of great importance for understanding diseases of the eye and clinical decision-making. In this paper, we propose a novel Voting-based Adaptive Feature Fusion multi-task network (VAFF-Net) for joint segmentation, detection, and classification of RV, FAZ, and RVJ in optical coherence tomography angiography (OCTA). A task-specific voting gate module is proposed to adaptively extract and fuse different features for specific tasks at two levels: features at different spatial positions from a single encoder, and features from multiple encoders. In particular, since the complexity of the microvasculature in OCTA images makes simultaneous precise localization and classification of retinal vascular junctions into bifurcation/crossing a challenging task, we specifically design a task head by combining the heatmap regression and grid classification. We take advantage of three different \textit{en face} angiograms from various retinal layers, rather than following existing methods that use only a single \textit{en face}. To facilitate further research, part of these datasets with the source code and evaluation benchmark have been released for public access:https://github.com/iMED-Lab/VAFF-Net.
翻译:在本文中,我们提议对视网膜轮廓(Retinal boves (RV)) 、 软血管带(FAZ) 和视网膜血管关口(RVJ) 等视网膜结构进行自动检测,对于了解眼部疾病和临床决策极为重要。我们提议了一个新的基于投票的适应性适应性功能变异变异多任务网络(VAFF-Net), 用于对RV、FAZ 和RVJ 的光学一致性断裂、检测和分类,透视摄影成像仪(OCTA) 。 提议了针对特定任务的投票门模块,以适应性方式提取和结合以下两个层面的具体任务的不同特征:单个编码的不同空间位置的特征,以及多个编码的特征。 特别是,由于OCTA图像的微血管变异复杂,使得视网膜关的定位和分类同步,进入/跨过一项具有挑战性的任务,我们专门设计了一个任务标题,将热映射回归和电网分类结合起来。 我们利用三种不同的评估/Text{englefleface 脸面 和这些研究的分类,而不是从现有的检索。