In millimeter-wave (mmWave) integrated sensing and communication networks, users may be within the coverage of multiple access points (AP), which typically employ large-scale antenna arrays to mitigate obstacle occlusion and path loss. However, large-scale arrays generate pencil-shaped beams, which necessitate a higher number of training beams to cover the desired space. Furthermore, as the antenna aperture increases, users are more likely to be situated in the near-field region of the AP antenna array. This motivates our investigation into the near-field beam training problem to achieve effective positioning services. To address the high complexity and low identification accuracy of existing beam training techniques, we propose an efficient hashing multi-arm beam (HMB) training scheme for the near-field scenario. Specifically, we first construct a near-field single-beam training codebook for the uniform planar arrays. Then, the hash functions are chosen independently to construct the multi-arm beam training codebooks for each AP. All APs traverse the predefined multi-arm beam training codeword simultaneously and the multi-AP superimposed signals at the user are recorded. Finally, the soft decision and voting methods are applied to obtain the correctly aligned beams only based on the signal powers. In addition, we logically prove that the traversal complexity is at the logarithmic level. Simulation results show that our proposed near-field HMB training method can achieve 96.4% identification accuracy of the exhaustive beam training method and greatly reduce the training overhead. Furthermore, we verify its applicability under the far-field scenario as well.
翻译:暂无翻译