Real-world visual recognition problems often exhibit long-tailed distributions, where the amount of data for learning in different categories shows significant imbalance. Standard classification models learned on such data distribution often make biased predictions towards the head classes while generalizing poorly to the tail classes. In this paper, we present two effective modifications of CNNs to improve network learning from long-tailed distribution. First, we present a Class Activation Map Calibration (CAMC) module to improve the learning and prediction of network classifiers, by enforcing network prediction based on important image regions. The proposed CAMC module highlights the correlated image regions across data and reinforces the representations in these areas to obtain a better global representation for classification. Furthermore, we investigate the use of normalized classifiers for representation learning in long-tailed problems. Our empirical study demonstrates that by simply scaling the outputs of the classifier with an appropriate scalar, we can effectively improve the classification accuracy on tail classes without losing the accuracy of head classes. We conduct extensive experiments to validate the effectiveness of our design and we set new state-of-the-art performance on five benchmarks, including ImageNet-LT, Places-LT, iNaturalist 2018, CIFAR10-LT, and CIFAR100-LT.


翻译:在不同类别中学习的数据数量显示出显著的不平衡; 在这些数据分布方面获得的标准分类模型往往对头类作出有偏见的预测,同时对尾类进行概括化的预测; 在本文中,我们介绍了对CNN的两种有效的修改,以改进从长尾分发中学习的网络; 首先,我们展示了一种分类活化地图校准模块,通过根据重要图像区域实施网络预测,改进网络分类的学习和预测; 拟议的CAM模块突出数据之间的相关图像区域,并加强了这些领域的表述,以获得更好的全球分类代表性; 此外,我们调查了在长期问题中使用正常分类方法进行代表性学习的情况; 我们的实证研究表明,只要用适当的标度来增加分类器的产出,就可以在不丧失头类准确性的情况下有效地提高尾类的分类准确性; 我们进行了广泛的实验,以验证我们的设计有效性,我们为五个基准设定了新的状态,包括图像网络、100-LT、IARTRT、CIARLT、CIAR-118、CIARLT和CIARLT。

0
下载
关闭预览

相关内容

专知会员服务
36+阅读 · 2021年6月6日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
0+阅读 · 2021年10月15日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员