Scoring systems, as simple classification models, have significant advantages in interpretability and transparency when making predictions. It facilitates humans' decision-making by allowing them to make a quick prediction by hand through adding and subtracting a few point scores and thus has been widely used in various fields such as medical diagnosis of Intensive Care Units. However, the (un)fairness issues in these models have long been criticized, and the use of biased data in the construction of score systems heightens this concern. In this paper, we proposed a general framework to create data-driven fairness-aware scoring systems. Our approach is first to develop a social welfare function that incorporates both efficiency and equity. Then, we translate the social welfare maximization problem in economics into the empirical risk minimization task in the machine learning community to derive a fairness-aware scoring system with the help of mixed integer programming. We show that the proposed framework provides practitioners or policymakers great flexibility to select their desired fairness requirements and also allows them to customize their own requirements by imposing various operational constraints. Experimental evidence on several real data sets verifies that the proposed scoring system can achieve the optimal welfare of stakeholders and balance the interpretability, fairness, and efficiency issues.


翻译:分类系统作为简单的分类模式,在作出预测时具有解释性和透明度方面的重大优势,有助于人类决策,通过增减几个点分数,使人类能够手工作出快速预测,快速预测,从而在医疗诊断密集护理单位等各个领域广泛使用,然而,长期以来,这些模型中的(不公平)问题一直受到批评,在建立得分系统时使用偏差数据加深了这种关切。在本文件中,我们提出了一个创建数据驱动公平认知的公平评分系统的一般框架。我们首先采取的方法是发展一种社会福利功能,既包括效率又包括公平。然后,我们把经济中的社会福利最大化问题转化为机器学习社区的经验风险最小化任务,以便利用混合整数规划来形成公平认知的评分系统。我们表明,拟议的框架为从业人员或决策者提供了选择他们想要的公平要求的巨大灵活性,并使他们能够通过施加各种操作限制来定制自己的要求。关于若干实际数据集的实验证据证实,拟议的评分系统能够实现利益攸关方的最佳福利,平衡解释、公平、公平和效率问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年11月12日
Two steps to risk sensitivity
Arxiv
1+阅读 · 2021年11月12日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员